
Introduction to the R-environment 1

R introduction (mainly based on Fox’s chapters I and II)
• R on the internet www.r-project.org
• R’s broad support basis (see R foundation member list)
• R’s constant update service
• Differences between S-plus and R and other statistical software

packages
• Advantages:

o Free, powerful and frequently updated
o Very broad support basis
o Open source: quality control and replicable results are possible
o De facto standard in the academic statistical community. Novel

methods are first implemented as prototype in R and later may
disseminate into commercial packages.

o There are many books on R and statistical data analysis with R
that are published in many different languages.
Some are even freely downloadable (see http://cran.r-
project.org/other-docs.html)

• Disadvantages:
o Steep learning curve because R is mostly command line driven.
o Basic documentation mainly summarizes the individual

functions and their interaction needs to be studies by looking at
provided sample code

o Except for the Rcmdr no menu interface
o There are a few outdated and poorly developed packages (We

won’t touch those)

Regression Analysis and Spatial analysis libraries for the R
environment
The functionality of a basic installation of R is already quite powerful.
However, specialized libraries (perhaps with sample datasets) have been
developed to extend this functionality. These libraries usually must be
downloaded and attached to your R session (see more in the
InstallRInclVista.pdf document).
Our main library for doing regression analysis are John Fox’s

http://www.r-project.org/
http://cran.r-project.org/other-docs.html
http://cran.r-project.org/other-docs.html

Introduction to the R-environment 2

• car library, which is well documented in “An R and S-Plus
Companion to Applied Regression”

• Most functions of the car library are also directly accessible through
the Rcmdr interface of John Fox.

• John Fox’s R companion website is
http://socserv.mcmaster.ca/jfox/Books/Companion/index.html

• For some analyses we will use Venables & Ripley’s MASS library

Subset of relevant R-packages that allow us to perform spatial regression
analysis:

• Spatial Statistics:
o spdep (autoregressive spatial regression and tests)

• Rudimentary mapping
o maptools (mapping shape files)

• General spatial analysis overview:
o http://cran.r-project.org/src/contrib/Views/Spatial.html
o http://www.sal.uiuc.edu/tools/tools-sum/rgeo/rgeo-

detail/geostatistics-packages-on-cran

The R Environment
• Explain the R-GUI

http://socserv.mcmaster.ca/jfox/Books/Companion/index.html
http://cran.r-project.org/src/contrib/Views/Spatial.html
http://www.sal.uiuc.edu/tools/tools-sum/rgeo/rgeo-detail/geostatistics-packages-on-cran
http://www.sal.uiuc.edu/tools/tools-sum/rgeo/rgeo-detail/geostatistics-packages-on-cran

Introduction to the R-environment 3

• Concept of workspaces, history file and scripts. The associate
extentions are

o *.RData: Copy of the workspace with all its variables and
custom user functions

o *.Rhistory contains all command that have been issued during a
session at the command prompt >

o *.R is a file that contains scripts, which can be a set of basic R
data analysis commands, individual functions, or an elaborate
program

• Change the working directory were scripts, workspaces are store and
searched by default.

• Receiving help:
o > help(FunctionName) or

> ?FunctionName or
online html help documents

o Thru the help menu:

Basic R mechanics

• The “>” prompt indicates that R is ready to receive commands
• Single commands can be run from the command line

Collections of commands (or programs) can be stored in external *.R
files and run as scripts with the command

Introduction to the R-environment 4

> source(“C:\\SpaReg\\MyFile.R”)
Notes:

o In R the backslash “\” is reserved as escape character, it thus
must be substituted by the double backslash “\\” to separated
component of a file path

o All characters and strings must be surrounded by quotation
marks, e.g., “…”

• The arrow UP and DOWN keys navigate thru the history of
previously issued R commands

• Previously issued commands can be edited only by using the arrow
keys to position the prompt

• All R commands are implemented as functions with parentheses, even
if they do not have specific parameters, e.g., the function ls(), which
lists all variables and functions in a workspace
> ls()

• Commands can be broken over several lines. The continuing prompt
“+” will then be displayed automatically. Example:
> ls(
+)

• Assignment operator to a variable is <-
> my.pi <- 3.14 (compare to > pi)

• Naming variables is alpha/numeric (“$” and “@” cannot be used)
Tips: Name variables properly so you and an external reader of your R
session can retrieve later what you were doing
Use the dot to structure your variable names, e.g., poly.X and poly.Y
R is case sensitive, e.g., My.Var and my.var are different (This has a
high potential for typos)
Warning: if you name a variable identically to an existing function in
R that function will no longer be accessible:
> exp <- 453.5

• Any function, data structure or variable that are defined during an R-
session become objects in the workspace unless they are removed

Introduction to the R-environment 5

from the workspace with the function
> rm(My.Var)

• Clean up by removing all objects from the R workspace:

• Key values:

o Logical values are T and F (or TRUE and FALSE)
o Unassigned variables have the value NULL
o Missing numbers have the value NA
o Infinity is Inf

• R only has a minimal editor for commands and function definitions.
External editors such as TinR can be added (see more in the
InstallRInclVista.pdf document)

• Also the data spread sheet is not very powerful. See function fix()
> fix(Columbus).

• The best way of saving R-output and figures is to copy and past them
into a graphically enhanced text editor such as Word

• All variables and functions in a workspace can be save for subsequent
sessions (see menu File Save Workspace …)

Some R-functions:

• Exercise:
> x <- seq(0.1 ,2,by=0.1)
> x
> y <- log(x)
> plot(x,y)
> help(plot)

Introduction to the R-environment 6

• In plot menu select History -> Recording to keep more than one
graphics in the plot memory.
> plot(x,y,type="l")

• Sample functions: ls(), c(…), cbind(…), seq(…), summary(…),
dim(…), length(…)

• Exercise:
> z <- rnorm(length(x))
> mat <- cbind(x,y,z)
> dim(mat)
> summary(mat)

Some Data Structures

List objects
• List objects allow to link data objects of different types and different

length together into a list container:
> my.cats <- c("Henry","Lily","Charlie")
> age.cats <- c(5,15,4)
> A <- matrix(rep(4,6),2,3)
> my.list <- list(catname = my.cats, age = age.cats, mat = A)
> my.list
$catname
[1] "Henry" "Lily" "Charlie"

$age
[1] 5 15 4

$mat
 [,1] [,2] [,3]
[1,] 4 4 4
[2,] 4 4 4

• Individual objects of the list can be addressed either by
> my.list$catname
[1] "Henry" "Lily" "Charlie"
> my.list[[1]]
[1] "Henry" "Lily" "Charlie"

• Individual elements of an object in a list can be addressed by

Introduction to the R-environment 7

> my.list$catname[1]
[1] "Henry"

• To delete an object in a list assign it the NULL value by issuing the
command:
> my.list$mat <- NULL

• To get information about an object use the attributes function:
> attributes(my.list)
$names
[1] "catname" "age"

• Remove the object my.list
> rm(my.list,A)

• R-functions can only return one data object. Thus if a function is
supposed to return several related results of different data-types (such
as a numerical matrix and a vector of names), then these results are
pooled together into a list object.

Data-frames
• Data-frames can pool several vectors of same length but potentially of

different data-types together.
It is important that these vectors are of the same length.
> my.data <- data.frame(my.cats,age.cats)
> my.data
 my.cats age.cats
1 Henry 5
2 Lily 15
3 Charlie 4

• The character variable my.cats and the numeric variable age.cats
are stored now in the data frame my.data

• The list function returns the objects that are presently in use
> ls()
> “my.cats” “age.cats” “my.data”

• To remove objects from an R session use the remove function
> rm(my.cats,age.cats)
> ls()
> “my.data”

Introduction to the R-environment 8

• The variables my.cats and age.cats are still stored as variables in the
data frame my.data

• To access the variables in the data frame several commands can be
used
> my.data$my.cats
> my.data[1]

• Alternatively, a data frames can be attached to the search path so that
the individual variables within a data-frame can be directly accessed
> attach(my.data)
> age.cats
[1] 5 15 4

• To remove a dataframe again from the search path issue the command
> detach(my.data)
[The variables in my.data are no longer directly accessible]

Indexing elements in a vector or matrix:

• Matrices can store vectors of same length and same data-type in an
rectangular arrangement

• To generate a matrix:
o List of elements:

> b <- c(10,20,30,40,15,25,35,45,1,2,3,4)
o Place elements into 4x3 matrix:

mat <- matrix(b,nrow=4,ncol=3)
• One element at location row and col mat[row,col]

A sequence of values mat[1:2,] (here the first and second row)
Exclusion of elements mat[-1,] (here the first row)

• One row mat[1,] or one column mat[,2]
• Also logical operations are permitted (here the first and second

columns are displayed):
> select <- c(T,T,F)
> mat[,select]

Logical operation

• Vectorized logical operators:
o == [logical equal]

Introduction to the R-environment 9

o & [logical “and”]
o | [logical “or”]

• Compare vectors elementwise:
> x <- 1:3 # gives 1,2,3
> x.logical <- x==x
> x.logical
> xx <- x
> xx[1] <- 99
> xx == x

Working with the Concord1 dataset:

• Download the Concord1.sav data set and the script
ScatterPlotMat.R from WebCT and store in a folder of your choice
(the suggested destination folder is C:\ SpaReg)

• Reading an external file:
> library(foreign)
> Concord <- read.spss("C:\\ SpaReg\\Concord1.sav",
+ use.value.labels=TRUE, to.data.frame=TRUE)
> summary(Concord) [notice the different data types]
> fix(Concord)
> Concord$WATER79 [notice the missing values]
> attach(Concord)
> WATER79

• Adding a variable to a data frame:
> Concord$LnWater81 <- log(WATER81)
> colnames(Concord)

• Removing a variable:
> Concord$LnWater81 <- NULL

Generate a scatter plot matrix:

• Discuss scatterplot script ScatterPlotMat.R
> pairs(cbind(INCOME,WATER81,WATER80),
+ panel=function(x,y){

Introduction to the R-environment 10

+ points(x,y)
+ abline(lm(y~x), lty=2)
+ lines(lowess(x,y))
+ },
+ diag.panel=function(x){
+ par(new=T)
+ hist(x,main="", axes=F, nclass=12)
+ }
+)

• Run the script:
> source("C:\\ SpaReg \\ScatterPlotMat.R")

Perform a basic regression analysis:

> attach(Concord)
> Concord.lm <- lm(WATER81 ~ INCOME + PEOP81)
> summary(Concrod.lm) [Inspect regression results]
> hist(rstudent(Concord.lm), nclass=12) [Any outliers?]
> library(car) [Needed for function qq.plot]
 [Identify outlier cases in interactive plot]
> qq.plot(Concord.lm,labels=row.names(Concord), simulate=T)
 [Stop selection by right-click with mouse]

• Updating the model without outlier observations 85, 124, and 125
> summary(update(Concord.lm,subset = -c(85,124 ,125)))
 [Compare estimated regression parameters]

Exercise:

• Download the file Columbus.dbf from WebCT.
• Load the dbf-file Columbus.dbf by using the function read.dbf in

the library foreign
• Explore the dataset
• Run a regression model with CRIME as dependent variable and

DISCBD as independent variable.

